
Gesture Authentication in Trusted Execution Environment

Richard Hanulewicz, Derek Palmerton, and Chang Min Park

I. INTRODUCTION

As the mobile platform grows ever-larger, security prob-
lems have become extremely important. Lots of prior work
has focused on various layers—application, platform, and
kernel. Despite this effort, vulnerabilities remain at every
layer. This is due to the necessity of exposing data to the
operating system. The larger consumer operating systems
grow in scope and scale, the more difficult it is to verify
them for security.

In this project, we use ARM TrustZone technology that
supports hardware isolation. The Trusted Execution Environ-
ment (TEE) is the small, easily verifiable, secure operating
system running the the Secure World. As long as TEE is
strongly secured, vulnerabilities and exploits in the Normal
World cannot compromise applications in the Secure World.
Using this technology, our system supports gesture authenti-
cation in TEE. To do that, we migrate IMU sensor drivers and
write new syscalls in TEE. We also implement theDynamic
Time Warping algorithm for more accurate gesture compar-
ison. Following sections cover all the details and challenges
we have encountered during this project.

II. PROBLEM MOTIVATION

As the security of our mobile devices has become an
integral issue due to the amount of personal information
that can be accessed through them, more and more complex
ways of authenticating users have come to the forefront.
Originally a passcode was used, or even a pattern, but recent
developments in phone security have been more focused on
biometrics with the advent of fingerprint scanners and facial
recognition. If we could combine a passcode with a biometric
in some consistently reproducible way, the security benefits
would be great. IMU sensor gestures have been researched
extensively [3] for their biometric capabilities, and to bring
this technology to production one must make the sensor
input secure. In order to do so ARM TrustZone is employed,
which matches the current security model used by fingerprint
sensors.

Figure 1 shows an architecture of ARM TrustZone. This
technology provides system-wide hardware isolation. It has
two environments, Rich Execution Environment (Normal
World) and Trusted Execution Environment (Secure World).
The Secure World is not accessible from the Normal World.
Mobile vendors lock the Secure World on their commercial
mobile phones and provide SDKs to trustworthy third-parties
for their Trusted Application to interface with the Secure
World. Therefore, we use a Hikey 960 development board
that has the TrustZone feature enabled and unlocked for
development purposes.

Fig. 1. ARM TrustZone Architecture

III. RELATED WORK

In this section, we compare our system with existing work
that uses TrustZone in two aspects—authenticated feature
and whether or not a server is required.

TABLE I
COMPARISON TO EXISTING WORK

Name Authenticated Feature Does Not
Sensor I/O UI Ad Require a Server

Our System X X

Viola [7] X X
SchrodinText [1] X
SeCloack [4] X X
Brasser [2] X
TruzDroid [8] X
VButton [6] X
AdAttester [5] X

Authenticated Feature: There are mainly 4 features that
existing work have authenticated, and the authentications
are done in the Trusted Execution Environment. (1) Vi-
ola [7] authenticates sensor usage. Whenever a particular
sensor is being used, it notifies by blinking. Our system
also authenticates an accelerometer sensor used by gesture
recognition. (2) Other work [1], [4], [2] authenticate I/O
communication and peripheral devices. These work by either
protecting sensitive textual contents or controlling the usage
of peripheral devices. (3) TruzDroid [8] and VButton [6]
encrypt UI actions and provide new verified UIs by moving
a display driver and a touch pad controller into the Secure
World. (4) AdAttester [5] enables unforgeable clicks and a



Secure World

                        Kernel Space 

Normal World

IMU 
Driver

Gesture 
Recognition

Trusted Gesture 
Authentication App

Encrypted Storage

TEE Client

Gesture 
Authentication App

GestureAuth
Application

(Android)

TEE Driver

SMC

I2C Driver

Fig. 2. System Architecture

verifiable display to prevent ad fraud.
Server Requirement: Whether a system requires a server

or not depends on what is being authenticated. It’s important
to keep an assumption that everything in the Normal Wrld
can be malicious. Even if an authentication is done in the
Secure World, a result may be polluted while being passed
to an application layer in the Normal World. Viola [7] and
SeCloack [4] do not require a server because they authen-
ticate entirely in the Secure World, and it does not matter
whether results are polluted while being passed. However,
other work [1], [2], [8], [6], [5] require a server to encrypt
their results being passed to an application in the Normal
World. Normally, both applications in the Normal World and
the Secure World get public key and private key from a server
to encrypt and decrypt a result. Actually, our system requires
encryption of the authentication decision when it is passed
from the Secure World to the Normal World. We do not have
an implementation or specific design for how this encryption
is to be done, and leave it as a future work for now.

IV. DESIGN AND IMPLEMENTATION

In this section, we present an overview of our system’s
design and implementation details.

A. Design

Figure 2 shows our system’s architecture. Different col-
ored components have different characteristics. We divide
this architecture into three parts—communication between
normal world and secure world, gesture recognition in secure
world, and migration of sensor drivers.

Communication between Normal World and Secure
World: The purple colored GestureAuth from Figure 2 is
an android application requesting a gesture authentication. It
calls the gesture authentication app in the Normal World.
Blue colored applications communicate with each other
between the different worlds using SMC (Secure Monitor
Call), which enables context switching. Including SMC,
all components colored with orange are features given by
OPTEE build, and those features support communication
between different worlds and provide secure storage. When
the context is switched to the Secure World, the trusted
gesture authentication app starts to recognize a gesture using
the Gesture Recognition module colored in green. After a
gesture is recognized, the Trusted Gesture Authentication
App returns a gesture name or authentication decision (de-
pending on use case) and switches the context to the Normal
World.

Fig. 3. Driver API Example

Gesture Authentication in Secure World: The IMU
sensor data is read from the sensors directly from the Secure
World. This way, it is not exposed to the Normal World. This
sensor data is then to be passed into the gesture recognition
algorithm. We use the Dynamic Time Warping (DTW) algo-
rithm to calculate a distance from other previously recorded
gestures that are stored in the persistent Encrypted Storage.
A sample of gesture data is stored and used as a time-series
of 3-dimensional accelerometer data. In an authentication
scenario, a window of 3D time-series input from the sensors
is captured and compared to the stored gesture data for the
user attempting to be authenticated. If the distance between
the input data and the stored data is below some threshold,
then we authenticate the user. If this distance is too large, as
in greater than the threshold, then authentication fails. The
threshold may vary based on user and gesture. A gesture
that is more difficult to reproduce, or a user that is simply
worse at reproducing their own gesture, may receive a larger
tolerance threshold for authentication.

Migration of Sensor Drivers: OpTEE drivers work much
like any other driver as they are simply a hardware interface
that operates in kernel space. Creating a driver of a type
that already exists (UART for example) is often times more
simple than creating a new class of drivers because the
infrastructure is already created for UART drivers. This
infrastructure includes things like an overarching API for the
class of drivers (Fig. 3), syscalls, and examples of how to
implement the driver. Creating a new class of drivers involves
developing each of these from scratch.

B. Implementation

Root Permissions: Since developing an Android app is
not complicated, we do not present the details here. This
Android application calls the Gesture Authentication App in
the Normal World (binary executable file) using:



Fig. 4. Time-Series Points Compared Using Euclidean Distance

Process Runtime.getRuntime().exec();

However, TEE client APIs used in the app require root
permissions, and getting root permissions in a specific app
is not simple unlike in adb shell. This is because giving
such permission to the specific app is extremely dangerous.
We solve this problem by changing the mode of SELinux to
permissive mode.

Gesture Authentication Apps between Normal World
and Secure World: After opening a session for a com-
munication, the normal Gesture Authentication App invokes
two TEE commands, one for calculation and another one for
requesting a gesture name. A calculation invoking command
passes a data number to calculate in TEE. It should pass the
data number because sensor data sets are predefined in the
Secure World for now. This invoke will not be needed when
the sensor drivers are successfully implemented in the Secure
World later. If a result is passed right after the calculation,
it throws an error. Since debugging a process in the Secure
World is hard, we have not debugged the issue yet and make
two invoke commands instead.

Gesture Comparisons: Due to complications in develop-
ment, the entire scope of the design for Gesture Authentica-
tion laid out in the last section was not achieved. For one, we
could not read the sensor data directly into the Secure World
due to complications with migrating the sensor drivers. This
is discussed in more detail later. Therefore, instead of a
live data feed, we recorded data on an external device that
had IMU sensors and then stored that data statically in the
Secure World for testing purposes. We also did not maintain
a database of users and their stored gestures, nor did we
implement the thresholding system proposed. This was all
due to time constraints placed on us by our other setbacks.
What we do successfully is compare two stored gestures in
the Secure World using the DTW algorithm and return the
calculated distance between them to the Normal World. This
demonstrates both the secure comparison of two gestures in
the Secure World as well as the ability to send information
back to the Normal World. In a real system you would not
want to send the distance back to the Normal World, but
rather an authentication decision made using that distance
in the Secure World. The details of the DTW algorithm are
discussed next.

Calculation of DTW (Dynamic Time Warping): Dynamic
Time Warping is an algorithm designed to overcome the

Fig. 5. Time-Series Points Compared Using Dynamic Time Warping

misalignment of time-series data. For example, consider we
have two very similar time-series, but they are offset from
each other by a few seconds. Using the regular euclidean
distance between data-points, such as in Figure 3, we see
that very dissimilar data points get compared to one another.
The similarity of these two time-series is completely missed
in this calculation! The goal of DTW is to find the distance
between the points representing similar features of the time-
series’, effectively re-aligning them, as shown in Figure 4.
This process is approximate, and the bigger the offset or
more noisy the data, the less accurate this re-alignment will
be.

The algorithm proceeds by first constructing an M x N cost
matrix, where M is the length of the first time-series, which
we’ll call A, and N is the length of the second time-series,
which we’ll call B. The length of a time-series is how many
discrete data-points it has. Starting from the coordinate (0,0),
the matrix, which we’ll call CM, is filled in from left-to-right
then bottom-to-top according to the following rule:

CM[i, j] = abs(Ai - Bj) + min(CM[i-1, j-1],
CM[i-1, j],
CM[i, j-1])

Simply put, the value from B at the current coordinate
is subtracted from that of A. Then, the minimum value
of all previous adjacent locations is added to the absolute
value of the result. (An unwritten detail is if the value
being calculated is at the edges of the matrix so there is
no previous adjacent location, we use infinity (practically,
MAX FLT) as a placeholder to effectively exclude it from
the min calculation).

Now that we have constructed our cost matrix, we must
now find the optimal path through the matrix and keep a
running sum of all the values on that path. We start from
the maximum coordinate in the matrix (top-right, in this
case) and work backwards. We add the current value to the
running sum, then look at the 3 previous adjacent values
and choose the minimum value. Repeat this process for each
chosen value until you reach the bottom-left of the matrix.
You have followed the optimal path and should have a sum
of all the values along it. This sum is the DTW distance, and
is what is returned by the DTW algorithm.

I2C Driver: Inter-integrated circuit (I2C) interfaces are
fairly common among hardware devices as it is second
only to UART as the most simple to implement and use.



Fig. 6. Hikey960 External Connector Schematic

Processors will typically provide a number of I2C interface
pins and a controller to deal with all of the hardware real-time
requirements of the protocol. The HiKey960 is no exception
and even provides I2C7s pins broken out to an external
connector on pins 19 and 21 (Fig. 6). The base address
for these I2C registers can be found in the HiKey960 SoC
Reference Manual. Synopsis Designware I2C controller is
used and its register definitions can be found in the HiSilicon
Hi6220V100 Multi-Mode Application Processor Function
Description document. From here the drivers init, read,
and write functions can be written by reading each of the
registers descriptions. Special considerations need to be taken
to disable the controller before writing to some registers
that change the configuration. Similarly, the controller uses
FIFOs to queue data when receiving or transmitting. Before
requesting more data the receive FIFO should be checked
and before sending more data the transmit FIFO should be
checked.

IMU Sensor Driver: The IMU sensor driver leverages
the I2C driver previously described to communicate with
the SparkFun LSB9DS1 chip. To change the configuration
of an I2C device one must initiate an I2C write. Each I2C
device has a hard coded address for each major operation
(read/write) as well as many minor addresses to index into
its register bank. Fig. 7 shows a generic write to the device: a
start condition is sent by the master, the slave address plus a
write bit is sent by the master, slave acknowledges, the sub-
address is sent by the master, slave acknowledges, the data to
set the register to is sent by the master, slave acknowledges,
and the master sends the stop condition. Similarly for the
read in Fig. 8, the master sends a repeated start condition
with the read bit set on the second. This IMU sensor has
the ability to stream data until the Master requests a stop.
There are also many configuration options for this sensor to
send data at a faster rate (10- 1000Hz) as well as different
schemes for determining which data to send; The chip can
send accelerometer only or acclerometer and gyroscope data.
The chip also provides on-board FIFOs that can either be
put in bypass mode (get the latest data), FIFO mode (FIFO
will not be updated once filled), and continuous mode (FIFO
will be overwritten once filled). The most useful modes for
gesture recognition are bypass and continuous because the
latest data is the most important. In FIFO mode the data

Fig. 7. IMU Sensor Write Sequence

Fig. 8. IMU Sensor Read Sequence

could be stale and could cause false negatives.
Writing Syscalls in OpTEE: In order to provide trusted

applications (TA) with access to hardware interfaces and
other low level operations OpTEE implements a static li-
brary called libutee, which indirectly exposes syscalls to the
developer. Syscalls are created using the UTEE SYSCALL
macro in assembly providing an entry point name, the syscall
number, and the number of arguments. The entry point name
argument is defined in utee syscalls.h as a function
prototype and the macro creates the function definition
which switches contexts to kernel space. In kernel space the
SYSCALL ENTRY macro is used to define a new syscall in
the array tee svc syscall table. This table of syscall
entries must be in the same order of syscall numbers defined
in libutee. The new entry point created in this table is defined
in its own file, and mirrors the syscall entry point defined
in libutee; it has the same number of arguments in order to
pass data from user space to kernel space.

There are two approaches to creating syscalls for a custom
module or driver. The first is to create a syscall for each
major operation to provide greater granularity and clarity
to the user. The second is to create only one syscall and
use one of the arguments as an operation type. Since
the OpTEE architecture provides libutee as a shim layer
between the user and the syscalls a combination of these
methods was used. A single syscall is created that takes an
operation type argument, but the libutee API provides
multiple calls to the TA developer at a more granular level.
These methods each call the same syscall, but with different
operation types. This allows for greater code re-use in the
driver and a generally more simple architecture.

V. EVALUATION

In our most basic comparison example, we show how
two similar gestures can be authenticated when compared to
two dissimilar gestures. We had Person A record a circular
gesture 10 times. Then we had Person A record a Z-
shaped gesture 10 times. We found that the average distance
between Person A’s circular gestures when compared to the
other 9 circular gestures was around 1232 with a standard
deviation of 227. Likewise, the average distance between
Person A’s Z-shaped gestures when compared to the other 9
Z-shaped gestures was around 1865 with a standard deviation
of 401. However, the average distance between Person A’s
circular gestures when compared to the 10 Z-shaped gestures
was 2790. This is significantly larger than when comparing
similar gestures, and shows us clearly that these can be



Fig. 9. Dynamic Time Warping Average Distances Between Users and
Gestures

recognized as different gestures by using DTW distance.
Things became a little more interesting when we added a

Person B to the mix. We had Person B record 10 circles and
10 Z-shaped gestures. Person B was instructed to try to per-
form them in the same way Person A had. We found that the
average distance between Person A’s circular gestures when
compared to Person B’s circular gestures was a whopping
2898 with a standard deviation of 678. We also found that
the average distance between Person A’s Z-shaped gestures
when compared to Person B’s Z-shaped gestures was an even
larger 3301 with a standard deviation of 1614.

To discover the source of this, we looked closer at the data.
It turns out, the reason Person A’s gestures were so much
different than Person B’s gestures, despite being conceptually
the same, has to to with the fact that Person B’s gestures
were far less consistent. Person B’s circles had an average
distance of 2562 among themselves, and Person B’s Z’s
had an average distance of 3328 among them. However,
Person B’s circles when compared to Z’s have an average
distance of 5042. What this shows us is that we can still
recognize when Person B’s gestures do not match, however,
this is an example where, because Person B is less skilled
at reproducing the exact gesture over and over again, the
threshold for authentication would have to be raised to suit
him. What kind of security implications this may have is left
up to future research.

This information also points subtly to a biometric com-
ponent to authentication itself. As you can see, Person A’s
circles vs Person B’s circles still had a higher distance be-
tween them than Person B’s circles against themselves. Same
goes for Z’s. This does present a small but present biometric
component to gesture authentication, in that it is potentially
difficult for someone to faithfully reproduce someone else’s
gesture. This effect may be more pronounced with more
complex and personalized gestures, such as signing one’s
name in the air. Exploring this idea is left up to future
research.

VI. CONCLUSIONS

In this paper, we present a gesture authentication system
using TrustZone. It successfully handles gesture recognition

and calculation in the Secure World that cannot be eas-
ily forgeable. Also, our evaluation section covers statistics
gathered from Dynamic Time Warping distances on sample
data. We believe that previous sections successfully show
a feasibility of gesture authentication using Secure World
technology similar to how it is used in state-of-the-art
fingerprint and facial recognition.

Even we could not finish building drivers for the IMU
sensors in OP-TEE and leave some parts for future work.
All project team members have enjoyed learning about
TrustZone technology and have been satisfied to demo suc-
cessfully running gesture authentication in the Secure World.

REFERENCES

[1] A. Amiri Sani. Schrodintext: Strong protection of sensitive textual
content of mobile applications. In Proceedings of the 15th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
MobiSys ’17, pages 197–210, New York, NY, USA, 2017. ACM.

[2] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R.
Sadeghi. Regulating arm trustzone devices in restricted spaces. In
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’16, pages 413–425, New
York, NY, USA, 2016. ACM.

[3] C.-W. F. Ho-Man Colman LEUNG and P.-A. HENG. Twistin: Tangible
authentication of smart devices via motion co-analysis with a smart-
watch. In Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, Volume 2 Issue 2, June 2018, pages 72:1–
72:24, New York, NY, USA, 2018. ACM.

[4] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee. Secloak: Arm
trustzone-based mobile peripheral control. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, pages 1–13, New York, NY, USA, 2018. ACM.

[5] W. Li, H. Li, H. Chen, and Y. Xia. Adattester: Secure online mobile
advertisement attestation using trustzone. In Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’15, pages 75–88, New York, NY, USA, 2015. ACM.

[6] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan.
Vbutton: Practical attestation of user-driven operations in mobile apps.
In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’18, pages 28–40, New
York, NY, USA, 2018. ACM.

[7] S. Mirzamohammadi and A. Amiri Sani. Viola: Trustworthy sensor
notifications for enhanced privacy on mobile systems. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Ap-
plications, and Services, MobiSys ’16, pages 263–276, New York, NY,
USA, 2016. ACM.

[8] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du.
Truz-droid: Integrating trustzone with mobile operating system. In
Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’18, pages 14–27, New
York, NY, USA, 2018. ACM.


